본문 바로가기

IT & Insight/IT News

“‘알파고’ 딥러닝 기술로 18개월 후 엘니뇨 발생 예측한다”

전남대 함유근 교수 "딥러닝으로 기후예측 성능 획기적 향상"…'네이처'에 발표


2016년 이세돌 9단과 ‘세기의 대국’을 펼친 바둑 인공지능 ‘알파고’에 적용된 딥러닝(Deep Learning) 기술을 활용해 1년반 후의 엘니뇨 발생을 예측할 수 있는 인공지능 기법이 국내 연구진에 의해 개발됐다.

함유근 전남대 지구환경과학부 교수는 19일 “딥러닝 기술을 이용해 엘니뇨의 발생 여부와 강도, 발생 위치까지 18개월 전에 예측할 수 있는 인공지능 기법을 개발했다”고 밝혔다. 이 연구 결과는 이날 국제학술지 ‘네이처’(Nature)에 실렸다.

딥러닝은 기계학습(머신러닝)의 일종으로, 인공지능이 주어진 데이터를 스스로 분석해 필요한 정보를 습득하고 이를 토대로 예측 및 판단 등을 할 수 있는 능력을 키우는 학습 방법을 뜻한다.

엘니뇨는 태평양 동부 또는 중부의 바닷물 온도가 평년보다 높아진 상태로 수개월 지속되는 현상으로, 폭염과 강추위 등 세계 기상이변을 일으키는 원인으로 알려졌다. 엘니뇨가 발생하면 기상 이변이 생길 가능성이 크다는 의미가 있는 만큼 이를 예측하는 게 중요하다.

연구진은 ‘알파고 대국’ 이후 딥러닝에 관심을 가지기 시작해 이 기법을 기후 예측 모형에 적용해 왔다. 이런 연구의 일환으로 이번에는 딥러닝 중 ‘합성곱 신경망 기법’(CNN, Convolutional Neural Network)을 응용해 엘니뇨 예측 모형을 개발했다. 알고리즘의 학습에는 20세기 대기-해양 접합 모형 시뮬레이션 결과와 1871년부터 1973년까지의 관측 자료를 썼다.

1984년부터 2017년까지의 자료를 이용해 예측성을 검증한 결과, 새 모형은 다른 기관에서 개발된 엘니뇨 예측 시스템보다 성능이 뛰어난 것으로 확인됐다. 기존 시스템에서는 6~9개월 전에 엘니뇨 발달 여부를 성공적으로 예측할 수 있었지만, 새 모형은 18개월 전에 예측하는 게 가능했다.

연구진은 “엘니뇨는 전 지구적인 기후 요동을 만드는 가장 대표적인 기후 변동”이라며 “엘니뇨의 예측 성능이 1년 미만에서 18개월로 늘어나면 엘니뇨로 인해 발생하는 전 세계적인 곡물 가격 변동 등에 선제적으로 대응할 수 있게 된다”고 설명했다.

새 모형은 또 엘니뇨가 발생하는 위치가 태평양 동부인지 또는 중부인지 구분해 예측할 수 있었다. 2000년대 이후에는 태평양 중부 엘니뇨가, 2000년대 이전에는 태평양 동부 엘니뇨가 자주 발생했는데, 두 엘니뇨는 기후에 미치는 영향이 매우 다르기 때문에 둘을 구분할 필요가 있다.

함 교수는 “이번 연구는 딥러닝 기법을 통해 기후 예측 성능을 획기적으로 높인 사례”라며 “향후 엘니뇨 현상뿐 아니라 다양한 기후 현상의 예측 성능 향상을 위해 인공 지능 기법이 도입될 수 있음을 시사한다”고 말했다. 이번 연구는 한국기상산업기술원의 지원으로 수행됐다.



출처 : https://www.sciencetimes.co.kr/?p=196407&cat=135&post_type=news